direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C23.84C23, C2.C42.7C6, C23.88(C22×C6), C6.37(C42⋊2C2), (C22×C12).37C22, (C22×C6).465C23, (C22×C4).15(C2×C6), C2.7(C3×C42⋊2C2), C22.44(C3×C4○D4), (C2×C6).225(C4○D4), (C3×C2.C42).7C2, SmallGroup(192,834)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C23.84C23
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=1, e2=bcd, f2=cb=bc, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >
Subgroups: 202 in 118 conjugacy classes, 62 normal (6 characteristic)
C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C22×C4, C2×C12, C22×C6, C2.C42, C22×C12, C23.84C23, C3×C2.C42, C3×C23.84C23
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C4○D4, C22×C6, C42⋊2C2, C3×C4○D4, C23.84C23, C3×C42⋊2C2, C3×C23.84C23
(1 68 63)(2 65 64)(3 66 61)(4 67 62)(5 189 186)(6 190 187)(7 191 188)(8 192 185)(9 19 14)(10 20 15)(11 17 16)(12 18 13)(21 29 26)(22 30 27)(23 31 28)(24 32 25)(33 41 40)(34 42 37)(35 43 38)(36 44 39)(45 53 50)(46 54 51)(47 55 52)(48 56 49)(57 145 144)(58 146 141)(59 147 142)(60 148 143)(69 77 74)(70 78 75)(71 79 76)(72 80 73)(81 89 88)(82 90 85)(83 91 86)(84 92 87)(93 101 98)(94 102 99)(95 103 100)(96 104 97)(105 113 112)(106 114 109)(107 115 110)(108 116 111)(117 125 122)(118 126 123)(119 127 124)(120 128 121)(129 137 136)(130 138 133)(131 139 134)(132 140 135)(149 157 154)(150 158 155)(151 159 156)(152 160 153)(161 169 168)(162 170 165)(163 171 166)(164 172 167)(173 181 178)(174 182 179)(175 183 180)(176 184 177)
(1 151)(2 152)(3 149)(4 150)(5 101)(6 102)(7 103)(8 104)(9 107)(10 108)(11 105)(12 106)(13 109)(14 110)(15 111)(16 112)(17 113)(18 114)(19 115)(20 116)(21 117)(22 118)(23 119)(24 120)(25 121)(26 122)(27 123)(28 124)(29 125)(30 126)(31 127)(32 128)(33 129)(34 130)(35 131)(36 132)(37 133)(38 134)(39 135)(40 136)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(49 145)(50 146)(51 147)(52 148)(53 58)(54 59)(55 60)(56 57)(61 154)(62 155)(63 156)(64 153)(65 160)(66 157)(67 158)(68 159)(69 162)(70 163)(71 164)(72 161)(73 168)(74 165)(75 166)(76 167)(77 170)(78 171)(79 172)(80 169)(81 176)(82 173)(83 174)(84 175)(85 178)(86 179)(87 180)(88 177)(89 184)(90 181)(91 182)(92 183)(93 186)(94 187)(95 188)(96 185)(97 192)(98 189)(99 190)(100 191)
(1 12)(2 9)(3 10)(4 11)(5 60)(6 57)(7 58)(8 59)(13 63)(14 64)(15 61)(16 62)(17 67)(18 68)(19 65)(20 66)(21 71)(22 72)(23 69)(24 70)(25 75)(26 76)(27 73)(28 74)(29 79)(30 80)(31 77)(32 78)(33 83)(34 84)(35 81)(36 82)(37 87)(38 88)(39 85)(40 86)(41 91)(42 92)(43 89)(44 90)(45 95)(46 96)(47 93)(48 94)(49 99)(50 100)(51 97)(52 98)(53 103)(54 104)(55 101)(56 102)(105 150)(106 151)(107 152)(108 149)(109 156)(110 153)(111 154)(112 155)(113 158)(114 159)(115 160)(116 157)(117 164)(118 161)(119 162)(120 163)(121 166)(122 167)(123 168)(124 165)(125 172)(126 169)(127 170)(128 171)(129 174)(130 175)(131 176)(132 173)(133 180)(134 177)(135 178)(136 179)(137 182)(138 183)(139 184)(140 181)(141 188)(142 185)(143 186)(144 187)(145 190)(146 191)(147 192)(148 189)
(1 108)(2 105)(3 106)(4 107)(5 53)(6 54)(7 55)(8 56)(9 150)(10 151)(11 152)(12 149)(13 154)(14 155)(15 156)(16 153)(17 160)(18 157)(19 158)(20 159)(21 162)(22 163)(23 164)(24 161)(25 168)(26 165)(27 166)(28 167)(29 170)(30 171)(31 172)(32 169)(33 176)(34 173)(35 174)(36 175)(37 178)(38 179)(39 180)(40 177)(41 184)(42 181)(43 182)(44 183)(45 186)(46 187)(47 188)(48 185)(49 192)(50 189)(51 190)(52 191)(57 104)(58 101)(59 102)(60 103)(61 109)(62 110)(63 111)(64 112)(65 113)(66 114)(67 115)(68 116)(69 117)(70 118)(71 119)(72 120)(73 121)(74 122)(75 123)(76 124)(77 125)(78 126)(79 127)(80 128)(81 129)(82 130)(83 131)(84 132)(85 133)(86 134)(87 135)(88 136)(89 137)(90 138)(91 139)(92 140)(93 141)(94 142)(95 143)(96 144)(97 145)(98 146)(99 147)(100 148)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)(145 146 147 148)(149 150 151 152)(153 154 155 156)(157 158 159 160)(161 162 163 164)(165 166 167 168)(169 170 171 172)(173 174 175 176)(177 178 179 180)(181 182 183 184)(185 186 187 188)(189 190 191 192)
(1 130 106 84)(2 35 107 176)(3 132 108 82)(4 33 105 174)(5 170 55 31)(6 78 56 128)(7 172 53 29)(8 80 54 126)(9 81 152 131)(10 173 149 36)(11 83 150 129)(12 175 151 34)(13 180 156 37)(14 88 153 134)(15 178 154 39)(16 86 155 136)(17 91 158 137)(18 183 159 42)(19 89 160 139)(20 181 157 44)(21 188 164 45)(22 96 161 142)(23 186 162 47)(24 94 163 144)(25 99 166 145)(26 191 167 50)(27 97 168 147)(28 189 165 52)(30 104 169 59)(32 102 171 57)(38 110 177 64)(40 112 179 62)(41 113 182 67)(43 115 184 65)(46 118 185 72)(48 120 187 70)(49 121 190 75)(51 123 192 73)(58 125 103 79)(60 127 101 77)(61 135 111 85)(63 133 109 87)(66 140 116 90)(68 138 114 92)(69 143 119 93)(71 141 117 95)(74 148 124 98)(76 146 122 100)
(1 164 151 71)(2 118 152 22)(3 162 149 69)(4 120 150 24)(5 42 101 138)(6 89 102 184)(7 44 103 140)(8 91 104 182)(9 161 107 72)(10 119 108 23)(11 163 105 70)(12 117 106 21)(13 122 109 26)(14 168 110 73)(15 124 111 28)(16 166 112 75)(17 171 113 78)(18 125 114 29)(19 169 115 80)(20 127 116 31)(25 62 121 155)(27 64 123 153)(30 65 126 160)(32 67 128 158)(33 46 129 142)(34 93 130 186)(35 48 131 144)(36 95 132 188)(37 98 133 189)(38 49 134 145)(39 100 135 191)(40 51 136 147)(41 54 137 59)(43 56 139 57)(45 173 141 82)(47 175 143 84)(50 178 146 85)(52 180 148 87)(53 181 58 90)(55 183 60 92)(61 165 154 74)(63 167 156 76)(66 170 157 77)(68 172 159 79)(81 94 176 187)(83 96 174 185)(86 97 179 192)(88 99 177 190)
G:=sub<Sym(192)| (1,68,63)(2,65,64)(3,66,61)(4,67,62)(5,189,186)(6,190,187)(7,191,188)(8,192,185)(9,19,14)(10,20,15)(11,17,16)(12,18,13)(21,29,26)(22,30,27)(23,31,28)(24,32,25)(33,41,40)(34,42,37)(35,43,38)(36,44,39)(45,53,50)(46,54,51)(47,55,52)(48,56,49)(57,145,144)(58,146,141)(59,147,142)(60,148,143)(69,77,74)(70,78,75)(71,79,76)(72,80,73)(81,89,88)(82,90,85)(83,91,86)(84,92,87)(93,101,98)(94,102,99)(95,103,100)(96,104,97)(105,113,112)(106,114,109)(107,115,110)(108,116,111)(117,125,122)(118,126,123)(119,127,124)(120,128,121)(129,137,136)(130,138,133)(131,139,134)(132,140,135)(149,157,154)(150,158,155)(151,159,156)(152,160,153)(161,169,168)(162,170,165)(163,171,166)(164,172,167)(173,181,178)(174,182,179)(175,183,180)(176,184,177), (1,151)(2,152)(3,149)(4,150)(5,101)(6,102)(7,103)(8,104)(9,107)(10,108)(11,105)(12,106)(13,109)(14,110)(15,111)(16,112)(17,113)(18,114)(19,115)(20,116)(21,117)(22,118)(23,119)(24,120)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,58)(54,59)(55,60)(56,57)(61,154)(62,155)(63,156)(64,153)(65,160)(66,157)(67,158)(68,159)(69,162)(70,163)(71,164)(72,161)(73,168)(74,165)(75,166)(76,167)(77,170)(78,171)(79,172)(80,169)(81,176)(82,173)(83,174)(84,175)(85,178)(86,179)(87,180)(88,177)(89,184)(90,181)(91,182)(92,183)(93,186)(94,187)(95,188)(96,185)(97,192)(98,189)(99,190)(100,191), (1,12)(2,9)(3,10)(4,11)(5,60)(6,57)(7,58)(8,59)(13,63)(14,64)(15,61)(16,62)(17,67)(18,68)(19,65)(20,66)(21,71)(22,72)(23,69)(24,70)(25,75)(26,76)(27,73)(28,74)(29,79)(30,80)(31,77)(32,78)(33,83)(34,84)(35,81)(36,82)(37,87)(38,88)(39,85)(40,86)(41,91)(42,92)(43,89)(44,90)(45,95)(46,96)(47,93)(48,94)(49,99)(50,100)(51,97)(52,98)(53,103)(54,104)(55,101)(56,102)(105,150)(106,151)(107,152)(108,149)(109,156)(110,153)(111,154)(112,155)(113,158)(114,159)(115,160)(116,157)(117,164)(118,161)(119,162)(120,163)(121,166)(122,167)(123,168)(124,165)(125,172)(126,169)(127,170)(128,171)(129,174)(130,175)(131,176)(132,173)(133,180)(134,177)(135,178)(136,179)(137,182)(138,183)(139,184)(140,181)(141,188)(142,185)(143,186)(144,187)(145,190)(146,191)(147,192)(148,189), (1,108)(2,105)(3,106)(4,107)(5,53)(6,54)(7,55)(8,56)(9,150)(10,151)(11,152)(12,149)(13,154)(14,155)(15,156)(16,153)(17,160)(18,157)(19,158)(20,159)(21,162)(22,163)(23,164)(24,161)(25,168)(26,165)(27,166)(28,167)(29,170)(30,171)(31,172)(32,169)(33,176)(34,173)(35,174)(36,175)(37,178)(38,179)(39,180)(40,177)(41,184)(42,181)(43,182)(44,183)(45,186)(46,187)(47,188)(48,185)(49,192)(50,189)(51,190)(52,191)(57,104)(58,101)(59,102)(60,103)(61,109)(62,110)(63,111)(64,112)(65,113)(66,114)(67,115)(68,116)(69,117)(70,118)(71,119)(72,120)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128)(81,129)(82,130)(83,131)(84,132)(85,133)(86,134)(87,135)(88,136)(89,137)(90,138)(91,139)(92,140)(93,141)(94,142)(95,143)(96,144)(97,145)(98,146)(99,147)(100,148), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192), (1,130,106,84)(2,35,107,176)(3,132,108,82)(4,33,105,174)(5,170,55,31)(6,78,56,128)(7,172,53,29)(8,80,54,126)(9,81,152,131)(10,173,149,36)(11,83,150,129)(12,175,151,34)(13,180,156,37)(14,88,153,134)(15,178,154,39)(16,86,155,136)(17,91,158,137)(18,183,159,42)(19,89,160,139)(20,181,157,44)(21,188,164,45)(22,96,161,142)(23,186,162,47)(24,94,163,144)(25,99,166,145)(26,191,167,50)(27,97,168,147)(28,189,165,52)(30,104,169,59)(32,102,171,57)(38,110,177,64)(40,112,179,62)(41,113,182,67)(43,115,184,65)(46,118,185,72)(48,120,187,70)(49,121,190,75)(51,123,192,73)(58,125,103,79)(60,127,101,77)(61,135,111,85)(63,133,109,87)(66,140,116,90)(68,138,114,92)(69,143,119,93)(71,141,117,95)(74,148,124,98)(76,146,122,100), (1,164,151,71)(2,118,152,22)(3,162,149,69)(4,120,150,24)(5,42,101,138)(6,89,102,184)(7,44,103,140)(8,91,104,182)(9,161,107,72)(10,119,108,23)(11,163,105,70)(12,117,106,21)(13,122,109,26)(14,168,110,73)(15,124,111,28)(16,166,112,75)(17,171,113,78)(18,125,114,29)(19,169,115,80)(20,127,116,31)(25,62,121,155)(27,64,123,153)(30,65,126,160)(32,67,128,158)(33,46,129,142)(34,93,130,186)(35,48,131,144)(36,95,132,188)(37,98,133,189)(38,49,134,145)(39,100,135,191)(40,51,136,147)(41,54,137,59)(43,56,139,57)(45,173,141,82)(47,175,143,84)(50,178,146,85)(52,180,148,87)(53,181,58,90)(55,183,60,92)(61,165,154,74)(63,167,156,76)(66,170,157,77)(68,172,159,79)(81,94,176,187)(83,96,174,185)(86,97,179,192)(88,99,177,190)>;
G:=Group( (1,68,63)(2,65,64)(3,66,61)(4,67,62)(5,189,186)(6,190,187)(7,191,188)(8,192,185)(9,19,14)(10,20,15)(11,17,16)(12,18,13)(21,29,26)(22,30,27)(23,31,28)(24,32,25)(33,41,40)(34,42,37)(35,43,38)(36,44,39)(45,53,50)(46,54,51)(47,55,52)(48,56,49)(57,145,144)(58,146,141)(59,147,142)(60,148,143)(69,77,74)(70,78,75)(71,79,76)(72,80,73)(81,89,88)(82,90,85)(83,91,86)(84,92,87)(93,101,98)(94,102,99)(95,103,100)(96,104,97)(105,113,112)(106,114,109)(107,115,110)(108,116,111)(117,125,122)(118,126,123)(119,127,124)(120,128,121)(129,137,136)(130,138,133)(131,139,134)(132,140,135)(149,157,154)(150,158,155)(151,159,156)(152,160,153)(161,169,168)(162,170,165)(163,171,166)(164,172,167)(173,181,178)(174,182,179)(175,183,180)(176,184,177), (1,151)(2,152)(3,149)(4,150)(5,101)(6,102)(7,103)(8,104)(9,107)(10,108)(11,105)(12,106)(13,109)(14,110)(15,111)(16,112)(17,113)(18,114)(19,115)(20,116)(21,117)(22,118)(23,119)(24,120)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,58)(54,59)(55,60)(56,57)(61,154)(62,155)(63,156)(64,153)(65,160)(66,157)(67,158)(68,159)(69,162)(70,163)(71,164)(72,161)(73,168)(74,165)(75,166)(76,167)(77,170)(78,171)(79,172)(80,169)(81,176)(82,173)(83,174)(84,175)(85,178)(86,179)(87,180)(88,177)(89,184)(90,181)(91,182)(92,183)(93,186)(94,187)(95,188)(96,185)(97,192)(98,189)(99,190)(100,191), (1,12)(2,9)(3,10)(4,11)(5,60)(6,57)(7,58)(8,59)(13,63)(14,64)(15,61)(16,62)(17,67)(18,68)(19,65)(20,66)(21,71)(22,72)(23,69)(24,70)(25,75)(26,76)(27,73)(28,74)(29,79)(30,80)(31,77)(32,78)(33,83)(34,84)(35,81)(36,82)(37,87)(38,88)(39,85)(40,86)(41,91)(42,92)(43,89)(44,90)(45,95)(46,96)(47,93)(48,94)(49,99)(50,100)(51,97)(52,98)(53,103)(54,104)(55,101)(56,102)(105,150)(106,151)(107,152)(108,149)(109,156)(110,153)(111,154)(112,155)(113,158)(114,159)(115,160)(116,157)(117,164)(118,161)(119,162)(120,163)(121,166)(122,167)(123,168)(124,165)(125,172)(126,169)(127,170)(128,171)(129,174)(130,175)(131,176)(132,173)(133,180)(134,177)(135,178)(136,179)(137,182)(138,183)(139,184)(140,181)(141,188)(142,185)(143,186)(144,187)(145,190)(146,191)(147,192)(148,189), (1,108)(2,105)(3,106)(4,107)(5,53)(6,54)(7,55)(8,56)(9,150)(10,151)(11,152)(12,149)(13,154)(14,155)(15,156)(16,153)(17,160)(18,157)(19,158)(20,159)(21,162)(22,163)(23,164)(24,161)(25,168)(26,165)(27,166)(28,167)(29,170)(30,171)(31,172)(32,169)(33,176)(34,173)(35,174)(36,175)(37,178)(38,179)(39,180)(40,177)(41,184)(42,181)(43,182)(44,183)(45,186)(46,187)(47,188)(48,185)(49,192)(50,189)(51,190)(52,191)(57,104)(58,101)(59,102)(60,103)(61,109)(62,110)(63,111)(64,112)(65,113)(66,114)(67,115)(68,116)(69,117)(70,118)(71,119)(72,120)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128)(81,129)(82,130)(83,131)(84,132)(85,133)(86,134)(87,135)(88,136)(89,137)(90,138)(91,139)(92,140)(93,141)(94,142)(95,143)(96,144)(97,145)(98,146)(99,147)(100,148), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192), (1,130,106,84)(2,35,107,176)(3,132,108,82)(4,33,105,174)(5,170,55,31)(6,78,56,128)(7,172,53,29)(8,80,54,126)(9,81,152,131)(10,173,149,36)(11,83,150,129)(12,175,151,34)(13,180,156,37)(14,88,153,134)(15,178,154,39)(16,86,155,136)(17,91,158,137)(18,183,159,42)(19,89,160,139)(20,181,157,44)(21,188,164,45)(22,96,161,142)(23,186,162,47)(24,94,163,144)(25,99,166,145)(26,191,167,50)(27,97,168,147)(28,189,165,52)(30,104,169,59)(32,102,171,57)(38,110,177,64)(40,112,179,62)(41,113,182,67)(43,115,184,65)(46,118,185,72)(48,120,187,70)(49,121,190,75)(51,123,192,73)(58,125,103,79)(60,127,101,77)(61,135,111,85)(63,133,109,87)(66,140,116,90)(68,138,114,92)(69,143,119,93)(71,141,117,95)(74,148,124,98)(76,146,122,100), (1,164,151,71)(2,118,152,22)(3,162,149,69)(4,120,150,24)(5,42,101,138)(6,89,102,184)(7,44,103,140)(8,91,104,182)(9,161,107,72)(10,119,108,23)(11,163,105,70)(12,117,106,21)(13,122,109,26)(14,168,110,73)(15,124,111,28)(16,166,112,75)(17,171,113,78)(18,125,114,29)(19,169,115,80)(20,127,116,31)(25,62,121,155)(27,64,123,153)(30,65,126,160)(32,67,128,158)(33,46,129,142)(34,93,130,186)(35,48,131,144)(36,95,132,188)(37,98,133,189)(38,49,134,145)(39,100,135,191)(40,51,136,147)(41,54,137,59)(43,56,139,57)(45,173,141,82)(47,175,143,84)(50,178,146,85)(52,180,148,87)(53,181,58,90)(55,183,60,92)(61,165,154,74)(63,167,156,76)(66,170,157,77)(68,172,159,79)(81,94,176,187)(83,96,174,185)(86,97,179,192)(88,99,177,190) );
G=PermutationGroup([[(1,68,63),(2,65,64),(3,66,61),(4,67,62),(5,189,186),(6,190,187),(7,191,188),(8,192,185),(9,19,14),(10,20,15),(11,17,16),(12,18,13),(21,29,26),(22,30,27),(23,31,28),(24,32,25),(33,41,40),(34,42,37),(35,43,38),(36,44,39),(45,53,50),(46,54,51),(47,55,52),(48,56,49),(57,145,144),(58,146,141),(59,147,142),(60,148,143),(69,77,74),(70,78,75),(71,79,76),(72,80,73),(81,89,88),(82,90,85),(83,91,86),(84,92,87),(93,101,98),(94,102,99),(95,103,100),(96,104,97),(105,113,112),(106,114,109),(107,115,110),(108,116,111),(117,125,122),(118,126,123),(119,127,124),(120,128,121),(129,137,136),(130,138,133),(131,139,134),(132,140,135),(149,157,154),(150,158,155),(151,159,156),(152,160,153),(161,169,168),(162,170,165),(163,171,166),(164,172,167),(173,181,178),(174,182,179),(175,183,180),(176,184,177)], [(1,151),(2,152),(3,149),(4,150),(5,101),(6,102),(7,103),(8,104),(9,107),(10,108),(11,105),(12,106),(13,109),(14,110),(15,111),(16,112),(17,113),(18,114),(19,115),(20,116),(21,117),(22,118),(23,119),(24,120),(25,121),(26,122),(27,123),(28,124),(29,125),(30,126),(31,127),(32,128),(33,129),(34,130),(35,131),(36,132),(37,133),(38,134),(39,135),(40,136),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(49,145),(50,146),(51,147),(52,148),(53,58),(54,59),(55,60),(56,57),(61,154),(62,155),(63,156),(64,153),(65,160),(66,157),(67,158),(68,159),(69,162),(70,163),(71,164),(72,161),(73,168),(74,165),(75,166),(76,167),(77,170),(78,171),(79,172),(80,169),(81,176),(82,173),(83,174),(84,175),(85,178),(86,179),(87,180),(88,177),(89,184),(90,181),(91,182),(92,183),(93,186),(94,187),(95,188),(96,185),(97,192),(98,189),(99,190),(100,191)], [(1,12),(2,9),(3,10),(4,11),(5,60),(6,57),(7,58),(8,59),(13,63),(14,64),(15,61),(16,62),(17,67),(18,68),(19,65),(20,66),(21,71),(22,72),(23,69),(24,70),(25,75),(26,76),(27,73),(28,74),(29,79),(30,80),(31,77),(32,78),(33,83),(34,84),(35,81),(36,82),(37,87),(38,88),(39,85),(40,86),(41,91),(42,92),(43,89),(44,90),(45,95),(46,96),(47,93),(48,94),(49,99),(50,100),(51,97),(52,98),(53,103),(54,104),(55,101),(56,102),(105,150),(106,151),(107,152),(108,149),(109,156),(110,153),(111,154),(112,155),(113,158),(114,159),(115,160),(116,157),(117,164),(118,161),(119,162),(120,163),(121,166),(122,167),(123,168),(124,165),(125,172),(126,169),(127,170),(128,171),(129,174),(130,175),(131,176),(132,173),(133,180),(134,177),(135,178),(136,179),(137,182),(138,183),(139,184),(140,181),(141,188),(142,185),(143,186),(144,187),(145,190),(146,191),(147,192),(148,189)], [(1,108),(2,105),(3,106),(4,107),(5,53),(6,54),(7,55),(8,56),(9,150),(10,151),(11,152),(12,149),(13,154),(14,155),(15,156),(16,153),(17,160),(18,157),(19,158),(20,159),(21,162),(22,163),(23,164),(24,161),(25,168),(26,165),(27,166),(28,167),(29,170),(30,171),(31,172),(32,169),(33,176),(34,173),(35,174),(36,175),(37,178),(38,179),(39,180),(40,177),(41,184),(42,181),(43,182),(44,183),(45,186),(46,187),(47,188),(48,185),(49,192),(50,189),(51,190),(52,191),(57,104),(58,101),(59,102),(60,103),(61,109),(62,110),(63,111),(64,112),(65,113),(66,114),(67,115),(68,116),(69,117),(70,118),(71,119),(72,120),(73,121),(74,122),(75,123),(76,124),(77,125),(78,126),(79,127),(80,128),(81,129),(82,130),(83,131),(84,132),(85,133),(86,134),(87,135),(88,136),(89,137),(90,138),(91,139),(92,140),(93,141),(94,142),(95,143),(96,144),(97,145),(98,146),(99,147),(100,148)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144),(145,146,147,148),(149,150,151,152),(153,154,155,156),(157,158,159,160),(161,162,163,164),(165,166,167,168),(169,170,171,172),(173,174,175,176),(177,178,179,180),(181,182,183,184),(185,186,187,188),(189,190,191,192)], [(1,130,106,84),(2,35,107,176),(3,132,108,82),(4,33,105,174),(5,170,55,31),(6,78,56,128),(7,172,53,29),(8,80,54,126),(9,81,152,131),(10,173,149,36),(11,83,150,129),(12,175,151,34),(13,180,156,37),(14,88,153,134),(15,178,154,39),(16,86,155,136),(17,91,158,137),(18,183,159,42),(19,89,160,139),(20,181,157,44),(21,188,164,45),(22,96,161,142),(23,186,162,47),(24,94,163,144),(25,99,166,145),(26,191,167,50),(27,97,168,147),(28,189,165,52),(30,104,169,59),(32,102,171,57),(38,110,177,64),(40,112,179,62),(41,113,182,67),(43,115,184,65),(46,118,185,72),(48,120,187,70),(49,121,190,75),(51,123,192,73),(58,125,103,79),(60,127,101,77),(61,135,111,85),(63,133,109,87),(66,140,116,90),(68,138,114,92),(69,143,119,93),(71,141,117,95),(74,148,124,98),(76,146,122,100)], [(1,164,151,71),(2,118,152,22),(3,162,149,69),(4,120,150,24),(5,42,101,138),(6,89,102,184),(7,44,103,140),(8,91,104,182),(9,161,107,72),(10,119,108,23),(11,163,105,70),(12,117,106,21),(13,122,109,26),(14,168,110,73),(15,124,111,28),(16,166,112,75),(17,171,113,78),(18,125,114,29),(19,169,115,80),(20,127,116,31),(25,62,121,155),(27,64,123,153),(30,65,126,160),(32,67,128,158),(33,46,129,142),(34,93,130,186),(35,48,131,144),(36,95,132,188),(37,98,133,189),(38,49,134,145),(39,100,135,191),(40,51,136,147),(41,54,137,59),(43,56,139,57),(45,173,141,82),(47,175,143,84),(50,178,146,85),(52,180,148,87),(53,181,58,90),(55,183,60,92),(61,165,154,74),(63,167,156,76),(66,170,157,77),(68,172,159,79),(81,94,176,187),(83,96,174,185),(86,97,179,192),(88,99,177,190)]])
66 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4N | 6A | ··· | 6N | 12A | ··· | 12AB |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | ||||
image | C1 | C2 | C3 | C6 | C4○D4 | C3×C4○D4 |
kernel | C3×C23.84C23 | C3×C2.C42 | C23.84C23 | C2.C42 | C2×C6 | C22 |
# reps | 1 | 7 | 2 | 14 | 14 | 28 |
Matrix representation of C3×C23.84C23 ►in GL6(𝔽13)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
3 | 7 | 0 | 0 | 0 | 0 |
6 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 9 |
0 | 0 | 0 | 0 | 4 | 11 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 9 | 0 | 0 |
0 | 0 | 9 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 6 |
0 | 0 | 0 | 0 | 7 | 3 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[3,6,0,0,0,0,7,10,0,0,0,0,0,0,0,5,0,0,0,0,8,0,0,0,0,0,0,0,2,4,0,0,0,0,9,11],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,3,9,0,0,0,0,9,10,0,0,0,0,0,0,10,7,0,0,0,0,6,3],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C3×C23.84C23 in GAP, Magma, Sage, TeX
C_3\times C_2^3._{84}C_2^3
% in TeX
G:=Group("C3xC2^3.84C2^3");
// GroupNames label
G:=SmallGroup(192,834);
// by ID
G=gap.SmallGroup(192,834);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,1176,365,512,1094,1059,142]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=1,e^2=b*c*d,f^2=c*b=b*c,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations